The impact of prior collaboration ties on group heterogeneity and productivity in research groups

Jonathon Cummings
Duke University

Sara Kiesler
Carnegie Mellon University

Research supported by grants from the National Science Foundation (SBE-0830254 and OCI-0838367)
Scientific Collaboration

- Working together of researchers to achieve the common goal of producing new scientific knowledge (Katz & Martin, 1997)

NSF ITR Examples

- “Project ZebraNet” (position-aware power-aware wireless computing for wildlife tracking) facilitated remote tracking of wildlife over large distances by biologists

- “Simulation-Based Medical Planning for Cardiovascular Disease” constructed computational models for physicians to predict differential changes in blood flow

- “ Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing” developed tools for security personnel to monitor and respond to disasters
Changing Landscape in Science

- Larger research teams have become more prevalent (Wuchty, Jones, & Uzzi, 2007)

- Interdisciplinary research teams have become more prevalent (Metzger & Zare, 1999)

- Multi-institution research teams have become more prevalent (Corley, Boardman, & Bozeman, 2006)
Research Question

How are group heterogeneity (multiple disciplines or multiple institutions) and group size related to research team productivity?

Team Heterogeneity and Size

- **Heterogeneity** (Mannix & Neale, 2005; Williams & O’Reilly, 1998)
 - Interdisciplinary - disciplinary differences in language and norms about the research process (e.g., Palmer, 1999)
 - Multi-institution - geographic dispersion and cultural differences across institutions (e.g., Herbsleb, Mockus, Finholt, & Grinter, 2000; Olson & Olson, 2000)

- **Size** (Steiner, 1972)
 - more members provide more resources available to meet task demands (e.g., publishing more papers)
Group Identification

- People define themselves in terms of their meaningful social groups; they tend to view in-group members more favorably than out-group members (Abrams & Hogg, 1990; Brewer, 1991; Tajfel & Turner, 1986)

- Group heterogeneity creates barriers to identification with the group as a whole because members do not feel psychologically connected to those who are different (O’Reilly, Caldwell, & Barnett, 1989; Tsui, Egan, & O’Reilly, 1992)
Weakened group identification can raise motivation and coordination costs for larger groups (Mueller, 2012; Wheelan, 2009)

- Motivation costs include social loafing; members of larger groups perform less than their share of the work (Latane, Williams, & Harkins, 1979)
- Coordination costs include managing the flow of work as well as sustaining members’ attention and cooperation (Chompalov, Genuth, & Shrum, 2002; Malone, 1987)
Hypotheses

- Productivity in larger (vs. smaller) research teams should decrease with more disciplines represented [H1]

- Productivity in larger (vs. smaller) research teams should decrease with more institutions represented [H2]
ITR Study of Research Groups

N=549 funded projects in the Information Technology Research (ITR) program at NSF

- Program grew from US $90M in 2000 to US $295M in 2004

- Typical project was funded 3-5 years ($500,000-$1M/year), had five Principal Investigators (PIs), represented two disciplines and two universities

- Interview/observation data gathered from 2-day PI meeting

- Survey on coordination costs and outcomes completed by 885 PIs (at least one per project, 68% response rate) in 2005*

ITR Follow-Up (5-9 Years Later)

PI publications mined from NSF Final Reports, Google Scholar, and Web of Science

- Created group-level measure of productivity for each ITR project to assess number of (unique) publications (as listed in NSF Final Reports)
- Also created a control variable for publications prior to ITR project (as documented in Google Scholar and Web of Science)
Hierarchical regression models of the effect of research group size and group heterogeneity (multiple disciplines or institutions) on group productivity

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Dependent Variable 1: Log NSF Final Report Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Step 1</td>
</tr>
<tr>
<td>Controls*</td>
<td></td>
</tr>
<tr>
<td>Publications prior to project (log)</td>
<td>.33***</td>
</tr>
<tr>
<td>Project funding (log)</td>
<td>.20***</td>
</tr>
<tr>
<td>Main Effects</td>
<td></td>
</tr>
<tr>
<td>Number investigators (1 – 13+)</td>
<td>.27***</td>
</tr>
<tr>
<td>Number of disciplines (1 – 4+)</td>
<td>.02</td>
</tr>
<tr>
<td>Number of institutions (1 – 7+)</td>
<td>-.07</td>
</tr>
<tr>
<td>Two-Way Interactions</td>
<td></td>
</tr>
<tr>
<td>Number investigators x number disciplines [H1]</td>
<td></td>
</tr>
<tr>
<td>Number investigators x number institutions [H2]</td>
<td></td>
</tr>
</tbody>
</table>

Not all controls included in slide. Standardized coefficients. N = 549.
Predicted number of publications as a function of research group size and heterogeneity as measured by number of disciplines of the investigators.

Shown are slopes for low and high heterogeneity (low $t = 5.23$, $p < .0001$, $d = .45$; high $t = .64$, n.s.) The slope in the middle is shown for purposes of illustration: Above 3 disciplines ($t = 2.79$, $p < .01$, $d = .24$), the slopes are not statistically significant.
Predicted number of publications as a function of research group size and group heterogeneity as measured by number of institutions involved in the research.

Shown are slopes for low and high heterogeneity (low $t = 4.88, p < .0001, d = .42$; high $t = .12$, n.s.) The slope in the middle is shown for purposes of illustration. Above 4 institutions ($t = 2.5, p = .01, d = .22$), the slopes are not statistically significant.
Science policy emphasizes the desirability of research teams that can integrate diverse perspectives and expertise into new knowledge, methods, and products.

Though larger groups were more productive than smaller groups, their marginal productivity declined as their heterogeneity increased.

Both number of disciplines and number of institutions contributed to the decrease in marginal productivity for larger research groups.
What about impact of prior collaboration ties?

- **Collaboration Ties**
 - Two PIs who collaborate together, such as publishing an article (e.g., Dahlander & McFarland, 2013)

- **Research Groups**
 - Two or more PIs who collaborate together (e.g., Jones, Wuchty, & Uzzi, 2008)
Tie Familiarity and Group Identity

- **Tie Familiarity** (Gulati, 1995; Gruenfeld et al., 1996)
 - Prior experience facilitates trust as well as mutual knowledge (e.g., Krauss & Fussell, 1990; Uzzi & Lancaster, 2003; Reagans, Argote, & Brooks, 2005)

- Thought question - How does prior collaboration tie familiarity among PIs shape group identity?
 - Positively → trust and mutual knowledge spills over to group, increasing group identification?
 - Negatively → trust and mutual knowledge continues for particular collaboration tie, but undermines group identification?
Prior Ties and Group Ties in ITR Study

- 22% of PIs co-authored at least one paper together prior to research group (Google Scholar)

- 24% of PIs co-authored at least one paper together during research group (NSF Final Reports)

2 out of 10 possible collaboration ties = 20%

* 99% of research groups published (mean = 85 papers)
Correlations – Prior Ties and Group Ties

<table>
<thead>
<tr>
<th></th>
<th>Proportion of Prior Ties</th>
<th>Proportion of Group Ties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Size</td>
<td>$r = -0.06$</td>
<td>$r = -0.07$</td>
</tr>
<tr>
<td>Heterogeneity (Disciplines)</td>
<td>$r = -0.15^{***}$</td>
<td>$r = -0.03$</td>
</tr>
<tr>
<td>Heterogeneity (Institutions)</td>
<td>$r = -0.05$</td>
<td>$r = -0.11^{**}$</td>
</tr>
<tr>
<td>Group Productivity</td>
<td>$r = -0.05$</td>
<td>$r = 0.28^{***}$</td>
</tr>
</tbody>
</table>

N=549
Prior/Group Ties and Size

<table>
<thead>
<tr>
<th>Prior Co-Authors & Group Co-Authors</th>
<th>Average #PIs = 4.79</th>
<th>N=171</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior Co-Authors & No Group Co-Authors</td>
<td>Average #PIs = 4.63</td>
<td>N=156</td>
</tr>
<tr>
<td>No Prior Co-Authors & Group Co-Authors</td>
<td>Average #PIs = 3.81</td>
<td>N=95</td>
</tr>
<tr>
<td>No Prior Co-Authors & No Group Co-Authors</td>
<td>Average #PIs = 2.85</td>
<td>N=127</td>
</tr>
</tbody>
</table>
Prior/Group Ties and Heterogeneity

(Disciplines)

<table>
<thead>
<tr>
<th>Prior Co-Authors & Group Co-Authors</th>
<th>Prior Co-Authors & No Group Co-Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average #Disciplines = 2.27</td>
<td>Average #Disciplines = 2.22</td>
</tr>
<tr>
<td>N=171</td>
<td>N=156</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No Prior Co-Authors & Group Co-Authors</th>
<th>No Prior Co-Authors & No Group Co-Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average #Disciplines = 2.06</td>
<td>Average #Disciplines = 1.67</td>
</tr>
<tr>
<td>N=95</td>
<td>N=127</td>
</tr>
</tbody>
</table>
Prior/Group Ties and Heterogeneity (Institutions)

<table>
<thead>
<tr>
<th>Category</th>
<th>Average #Institutions</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior Co-Authors & Group Co-Authors</td>
<td>2.57</td>
<td>171</td>
</tr>
<tr>
<td>Prior Co-Authors & No Group Co-Authors</td>
<td>2.71</td>
<td>156</td>
</tr>
<tr>
<td>No Prior Co-Authors & Group Co-Authors</td>
<td>1.92</td>
<td>95</td>
</tr>
<tr>
<td>No Prior Co-Authors & No Group Co-Authors</td>
<td>1.65</td>
<td>127</td>
</tr>
</tbody>
</table>
Prior/Group Ties and Productivity

<table>
<thead>
<tr>
<th>Category</th>
<th>Average #Publications</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior Co-Authors & Group Co-Authors</td>
<td>130</td>
<td>171</td>
</tr>
<tr>
<td>No Prior Co-Authors & Group Co-Authors</td>
<td>93</td>
<td>95</td>
</tr>
<tr>
<td>Prior Co-Authors & No Group Co-Authors</td>
<td>63</td>
<td>156</td>
</tr>
<tr>
<td>No Prior Co-Authors & No Group Co-Authors</td>
<td>47</td>
<td>127</td>
</tr>
</tbody>
</table>
Reactions?

Thanks!

jonathon.cummings@duke.edu