Jasmine and Carmen presents at NCA 2019

Our lab members, Jasmine and Carmen are going to present at NCA 2019 for a paper they wrote on how avatar gender affects female participant’s negotiation style and outcomes in an online environment. This work was based on their undergraduate research at Cornell University. The presentation will be Sunday 11/11, 11am, and the paper was awarded the Best Student Paper at the Organizational Communication Division!

Continue Reading

Noshir Presents “Some Assembly Required” for University of Florida’s CTSI Team Science Talks


Lab Director Noshir Contractor presented his lecture “Some Assembly Required: Organizing in the 21st Century” on Oct. 26, 2015 for the Clinical and Translational Science Institute’s Team Science Talks at the University of Florida. His talk illustrated how comprehensive digital trace data provide an unprecedented exploratorium to model the socio-technical motivations for creating, maintaining, dissolving, and reconstituting into teams – arguing that Network Science is foundational in advancing our understanding of effective team emergence and that these insights are building a new generation of recommender systems that leverage our research insights on the socio-technical motivations for creating ties.

Continue Reading

SONIC Alumnus Featured in NU Alumni Association Spotlight Series

NeelThe Northwestern Alumni Association chose to highlight former SONIC Research Assistant, Neel Kunjur, for his post-college achievements at SpaceX. In his profile, Neel reflects on how his undergraduate education in McCormick prepared him to work at the cutting edge of space technology.

For his full profile, check out:


Continue Reading

Alina Lungeanu Successfully Defends Dissertation: Assembly Mechanisms of Interdisciplinary Scientific Teams and Their Impact on Performance

Alina Lungeanu successfully defended her dissertation proposal titled “Assembly Mechanisms of Interdisciplinary Scientific Teams and Their Impact on Performance” on September 7th, 2015. The committee it was presented to included Noshir Contractor (chair), Darren Gergle, Brian Uzzi, Uri Wilensky, and Teresa Woodruff. Alina is currently a Research Associate at the Population Research Institute, The Pennsylvania State University. Congratulations Alina!

Continue Reading

The SONIC Speaker Series: Arno Scharl on Sept. 23rd, 2015

SONIC Lab is proud to welcome Arno Scharl, who will present a talk on Wednesday, September 23rd, 2015 at 10:00 AM in the SONIC Lab in the Frances Searle Building 1-459. All are welcome to attend. To schedule a one-on-one meeting with Dr. Scharl please schedule a time here. Please contact Meghan McCarter with any questions or comments.


Prof. DDr. Arno SCHARL, Department Head MODUL University Vienna (www.modul.ac.at), innen, sitzend, Interview
Prof. DDr. Arno SCHARL, Department Head MODUL University Vienna (www.modul.ac.at)

Web Intelligence and Visual Analytics to Reveal the Impact of Online Communication


The visual analytics tools of the webLyzard Web intelligence platform show the lexical, geospatial and relational context of topics and entities referenced news and social media coverage. This talk illustrates the platform’s capabilities with examples from the Media Watch on Climate Change, the U.S. Climate Resilience Toolkit and the NOAA Media Watch. These applications aggregate environmental Web content from a wide range of online sources, visualize patterns identified in the gathered content, and have led to the development of the webLyzard Stakeholder Dialog and Opinion Model (WYSDOM). Going beyond bipolar assessments of sentiment, WYSDOM provides real-time insights into the success of marketing and public outreach activities. It enables scientists and communication professionals to better understand how different stakeholders perceive observable risks and policy options, how specific media channels react to new insights, and how journalists present scientific knowledge to the public.

Three ongoing research projects advance the presented methods for knowledge extraction [2] and visualization [3]: ASAP increases the scalability of these methods; PHEME enriches their functionality by adding veracity detection to reveal online myths and rumors; DecarboNet extends and applies them to build a knowledge co-creation platform [1] that combines content analysis and social network analysis to identify information diffusion patterns within and across online communities.


Prof. Arno Scharl heads the Department of New Media Technology at MODUL University Vienna, and is the managing director of webLyzard technology. Prior to his current appointments, he held professorships at the University of Western Australia and Graz University of Technology, and was a Visiting Fellow at Curtin University of Technology and the University of California at Berkeley. Arno completed his doctoral research and habilitation at the Vienna University of Economics and Business. Additionally, he holds a PhD from the University of Vienna, Department of Sports Physiology. Having authored more than 160 refereed publications and edited two books in Springer‘s Advanced Information and Knowledge Processing Series, his research interests focus on Web intelligence and big data analytics, human-computer interaction, and the integration of semantic and geospatial Web technology.


  1. Scharl, A., Hubmann-Haidvogel, A., Sabou, M., Weichselbraun, A. and Lang, H.-P. (2013). “From Web Intelligence to Knowledge Co-Creation – A Platform to Analyze and Support Stakeholder Communication”, IEEE Internet Computing, 17(5): 21-29.
  2. Scharl, A., Herring, D., Rafelsberger, W., Hubmann-Haidvogel, A., Kamolov, R., Fischl, D., Föls, M. and Weichselbraun, A. (2015). “Semantic Systems and Visual Tools to Support Environmental Communication”, IEEE Systems Journal: Forthcoming (Accepted 31 July 2015).
  3. Weichselbraun, A., Gindl, S. and Scharl, A. (2014). “Enriching Semantic Knowledge Bases for Opinion Mining in Big Data Applications”, Knowledge-Based Systems, 69: 78-86.
Continue Reading

SONIC Presentations at Sunbelt Conference

SONIC Members presented at The International Sunbelt Social Network Conference in Brighton, UK on June 23– June 28, 2015. The dates, times, and locations, as well as abstracts for select presentations, can be found below.





A Multi-Relational Event Model for Understanding Channel Selection

Aaron Schecter & Noshir Contractor

Relationships are inherently dynamic; they start, stop, and change over time. As a consequence, the notion of a binary link between two individuals fails to capture the richness and complexity of interpersonal relations. Longitudinal network analysis, specifically actor-oriented models, determine how individuals craft their networks over time as a result of some underlying objective function. However, this approach only utilizes discrete observations of static networks. Given the rise of time-stamped event data, more granular statistical methods are required to leverage the information gained when every interaction can be observed. The relational event framework remedies that methodological gap. This model is a statistical tool for analyzing sequences of dyadic interactions and identifying emergent drivers of interpersonal action. While relationships cannot be viewed as static entities, they also cannot be viewed as one dimensional. Rather, interactions can be classified by their content, their affect, their method of delivery, or numerous other categories. While the original model was derived to handle multiple classes of relations, there has not been significant investigation into the implementation of a multi-relational event method or the resulting theoretical implications. In this study we address this issue through an explicit formulation of the relational event model which incorporates multiple types of dyadic actions. Additionally, we advance the notion of the multi-level sequential structural signature in the context of various relational classes. Specifically, we explain how the interplay of multiple dynamic interpersonal processes can predict future behaviors of any type. Our approach will be illustrated in the context of channel selection within a multi-team system (MTS) communication network. This study will make use of interpersonal communications from a large-scale series of experiments; data was collected from 17 laboratory sessions simulating a multi-team system scenario, each involving 20 unique participants (340 total individuals). During the experiment, individuals were able to communicate via text, which is a low richness channel, or audio, which is a high richness channel. We posit that the sequence, direction, and timing of interactions over each communication channel can be used to predict the efficacy of a MTS. Specifically, we hypothesize that the emergent behavioral trends that drive channel selection will reflect how effectively teams coordinate internally, teams coordinate externally, and leadership is expressed.


Funded by:

Army Research Lab W911NF-09-2-0053



Leveraging Who, Whom, and How: A Social Networking Tool to Scale Up Health Innovation in India

Noshir S. Contractor, Anup Sawant, Harshad Gado, Ivan Hernandez, Leslie A. DeChurch, Michelle Shumate

In the developing world, the day a baby is born is the most dangerous of their life. The lives of a great many mothers and their newborns could be saved not with expensive treatments and equipment, but with the adoption of basic health care practices. Simple practices like hand washing – before, during, and after childbirth – could save a great many lives. The biggest obstacle to improving health care in the developing world is not cost, it is social norms. Atul Gawande called this the problem of getting “slow ideas” to spread: “…neither penalties nor incentives achieve what we’re really after: a system and a culture where X is what people do, day in and day out, even when no one is watching… Getting to ‘X is what we do’ means establishing X as the norm. (Gawande, 2013).” This paper discusses the design, development, and deployment of a novel social networking tool designed to hasten the spread of slow ideas through social networks. We bring the power of networks and social motives together in a recommender system, the “Influence Strategy Wizard,” to aid development workers in identifying the most pivotal influencers (i.e., whom), the people they go to for advice (i.e., who), and the influence strategies most likely to activate their social motives (i.e., how) to spread slow ideas needed to improve health care. Prior research suggests that people are highly influenced by those in their immediate networks. Therefore, to better implement health innovations, it is essential to identify central individuals who are best positioned to influence a large segment of people. Complementing the influence of networks, psychological research suggests that people are influenced by messages that address universal motivations such as the desire to be accurate or affiliate with people. The current project draws on these insights to build a tool that helps health workers identify the key influencers who are best able to scale up family health innovations throughout the districts of Bihar, as well as the strategies to influence them. We interviewed 9,799 government health employees, 146 TSU personnel, and 57 development partners throughout 15 districts in Bihar, India. Respondents were asked whom they go to for advice about maternal & newborn health, improving nutrition, increasing infant immunizations, encouraging family planning, data-driven management plans, and training practices for family and health workers. Additionally, we surveyed government employees on their social motives so that targeted persuasion strategies could be built into the Wizard. From these networks, we can calculate who are the most central people in other’s advice networks for various innovations. We embed this data in the Wizard dashboard, accessible from any web-enabled device. Development workers select the type of innovation they want to implement, and who they want influence. If they are unsure of whom to influence, the Wizard recommends one. The tool then displays the network pathway and mechanism – who, whom, and how – needed to gain support for the innovation.


Funded by:

Bill and Melinda Gates Foundation Global Development Grant 21640

Bill and Melinda Gates Foundation Family Health Division Grant 1084322




Detection of Perfunctory Citations: Nuancing Impact Factors and Weighting Citation Networks to Account for Citation Heterogeneity

Ryan Whalen, Yun Huang, Anup Sawant, Noshir Contractor

Citations and citation networks provide valuable information and insight, helping us understand journal impact (Glänzel & Moed, 2002), scholarly productivity (McNutt, 2014), and knowledge structure and flow (Börner, Penumarthy, Meiss, & Ke, 2013). However, their use is complicated by the difficulty in distinguishing between meaningful and less-meaningful citations. This paper proposes a method utilizing full text of citing & cited papers, and keyword matching to provide more meaningful measures of citation weight and article impact. While there are many reasons to include citations to previous work, perhaps the greatest distinction in citation types is between “perfunctory” or “ritual” citations and citations that engage more deeply with the cited work. Empirical work shows that perfunctory citations make up a significant portion of all citations, with estimates ranging from 10–50% (Bornmann & Hans-Dieter, 2008). Traditional citation analyses largely ignore the strength of citation ties ignoring distinctions between perfunctory and substantive citations. We propose a method of semantic citation analysis to help address this lack of precision in citation studies. This method relies on traditional methods of citation analysis, but also takes into account the content of the cited and citing article via keyword extraction and comparison. Our method proceeds in four steps: first, we identify the universe of papers to be analyzed. For this early-stage study we examine all articles appearing in the journal Social Networks. Second, we identify the citation network between the articles in the dataset. At this stage we take into account not only which papers cite which papers, but also the text of the paragraph that the citation appears in. Third, we extract keywords from each of the papers in the study and associate those keywords with their origin paragraphs. We use multiple keyword extraction methods, including automated algorithmic extraction and by matching with a set of keywords appearing in the Web of Science. Finally, we use the keyword similarity between citing and cited papers to compute four novel metrics of citation weight and impact factor. These measures are calculated by weighting terms according to the tf-idf and calculating cosine similarity between Our four measures allow us to distinguish between impact factor and citation weights in accordance with how much similarity there is between the citing and cited articles’ content, helping us detect perfunctory citations and weight them accordingly. The measures include: Impact factor accounting for from content similarity between cited paper and citing paper; Impact factor accounting for from similarity between cited papers and their citing paragraphs; Citation weighting based on paper similarity; and Citation weighting based on paper and citing paragraph similarity. Our early findings show that taking into account the text of citing/cited articles provides meaningful information that nuances citation network analyses. Our presentation will more fully describe our data and methods, the metrics we use, and our results.


Funded by:

National Science Foundation CNS-1211375

Army Research Lab W911NF-09-2-0053

Continue Reading

Noshir Contractor featured as Distinguished Lecturer at the Vienna University of Technology’s PhD School Series

Noshir Contractor gave a talk on June 9th, 2015 at the Vienna University of Technology’s PhD School Series in Vienna, Austria. The title of the series was “Current Trends in Computer Science,” and Contractor’s talk was titled “Leveraging Computational Social Science to address Grand Societal Challenges.”

Read more about the PhD School Series here.


Continue Reading